The SomaDataIO
R package loads and exports ‘SomaScan’ data via the SomaLogic Operating Co., Inc. structured text file called an ADAT (*.adat
). The package also exports auxiliary functions for manipulating, wrangling, and extracting relevant information from an ADAT object once in memory. Basic familiarity with the R environment is assumed, as is the ability to install contributed packages from the Comprehensive R Archive Network (CRAN).
If you run into any issues/problems with SomaDataIO
full documentation of the most recent release can be found at our website of articles and workflows. If the issue persists we encourage you to consult the issues page and, if appropriate, submit an issue and/or feature request.
Usage
The SomaDataIO
package is licensed under the MIT license and is intended solely for research use only (“RUO”) purposes. The code contained herein may not be used for diagnostic, clinical, therapeutic, or other commercial purposes.
Installation
The easiest way to install SomaDataIO
is to install directly from CRAN:
install.packages("SomaDataIO")
Alternatively from GitHub:
remotes::install_github("SomaLogic/SomaDataIO")
which installs the most current “development” version from the repository HEAD
. To install the most recent release, use:
remotes::install_github("SomaLogic/SomaDataIO@*release")
To install a specific tagged release, use:
remotes::install_github("SomaLogic/SomaDataIO@v5.3.0")
Package Dependencies
The SomaDataIO
package was intentionally developed to contain a limited number of dependencies from CRAN. This makes the package more stable to external software design changes but also limits its contained feature set. With this in mind, SomaDataIO
aims to strike a balance providing long(er)-term stability and a limited set of features. Below are the package dependencies (see also the DESCRIPTION file):
Biobase
The Biobase
package is suggested, being required by only two functions, pivotExpressionSet()
and adat2eSet()
. Biobase must be installed separately from Bioconductor by entering the following from the R
Console:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("Biobase", version = remotes::bioc_version())
Information about Bioconductor can be found here: https://bioconductor.org/install/
Loading
Upon successful installation, load the SomaDataIO
as normal:
For an index of available commands:
library(help = SomaDataIO)
Objects and Data
The SomaDataIO
package comes with four (4) objects available to users to run canned examples (or analyses). They can be accessed once SomaDataIO
has been attached via library()
. They are:
-
example_data
: the original ‘SomaScan’ file (example_data.adat
) can be found here or downloaded directly via:-
within
SomaDataIO
it has been replaced by an abbreviated, light-weight version containing only the first 10 samples:dir(system.file("extdata", package = "SomaDataIO"), full.names = TRUE)
-
ex_analytes
: the analyte (feature) variables inexample_data
ex_anno_tbl
: the annotations table associated withexample_data
ex_target_names
: a mapping object for analyte -> targetSee also
?SomaScanObjects
Main (I/O) Features
- Loading data (Import)
- parse and import a
*.adat
text file into anR
session as asoma_adat
object.
- parse and import a
- Wrangling data (manipulation)
- subset, reorder, and list various fields of a
soma_adat
object. -
?SeqId
analyte (feature) matching. -
dplyr and tidyr verb S3 methods for the
soma_adat
class. -
?rownames
helpers that do not breaksoma_adat
attributes. - please see vignette
vignette("tips-loading-and-wrangling", package = "SomaDataIO")
- subset, reorder, and list various fields of a
- Exporting data (Output)
- write out a
soma_adat
object as a*.adat
text file.
- write out a
Loading an ADAT
Loading an ADAT text file is simple using read_adat()
:
# Sample file name
f <- system.file("extdata", "example_data10.adat",
package = "SomaDataIO", mustWork = TRUE)
my_adat <- read_adat(f)
# test object class
is.soma_adat(my_adat)
#> [1] TRUE
# S3 print method (forwards -> tibble)
my_adat
#> ══ SomaScan Data ═══════════════════════════════════════════════════════════════
#> SomaScan version V4 (5k)
#> Signal Space 5k
#> Attributes intact ✓
#> Rows 10
#> Columns 5318
#> Clinical Data 34
#> Features 5284
#> ── Column Meta ─────────────────────────────────────────────────────────────────
#> ℹ SeqId, SeqIdVersion, SomaId, TargetFullName, Target, UniProt, EntrezGeneID,
#> ℹ EntrezGeneSymbol, Organism, Units, Type, Dilution, PlateScale_Reference,
#> ℹ CalReference, Cal_Example_Adat_Set001, ColCheck,
#> ℹ CalQcRatio_Example_Adat_Set001_170255, QcReference_170255,
#> ℹ Cal_Example_Adat_Set002, CalQcRatio_Example_Adat_Set002_170255, Dilution2
#> ── Tibble ──────────────────────────────────────────────────────────────────────
#> # A tibble: 10 × 5,319
#> row_names PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 258495800012_3 Example… 2020-06-18 SG152144… H9 2.58e11 3
#> 2 258495800004_7 Example… 2020-06-18 SG152144… H8 2.58e11 7
#> 3 258495800010_8 Example… 2020-06-18 SG152144… H7 2.58e11 8
#> 4 258495800003_4 Example… 2020-06-18 SG152144… H6 2.58e11 4
#> 5 258495800009_4 Example… 2020-06-18 SG152144… H5 2.58e11 4
#> 6 258495800012_8 Example… 2020-06-18 SG152144… H4 2.58e11 8
#> 7 258495800001_3 Example… 2020-06-18 SG152144… H3 2.58e11 3
#> 8 258495800004_8 Example… 2020-06-18 SG152144… H2 2.58e11 8
#> 9 258495800001_8 Example… 2020-06-18 SG152144… H12 2.58e11 8
#> 10 258495800004_3 Example… 2020-06-18 SG152144… H11 2.58e11 3
#> # ℹ 5,312 more variables: SampleId <chr>, SampleType <chr>,
#> # PercentDilution <int>, SampleMatrix <chr>, Barcode <lgl>, Barcode2d <chr>,
#> # SampleName <lgl>, SampleNotes <lgl>, AliquotingNotes <lgl>,
#> # SampleDescription <chr>, …
#> ════════════════════════════════════════════════════════════════════════════════
Please see vignette vignette("tips-loading-and-wrangling", package = "SomaDataIO")
for more details and options.
Wrangling
The soma_adat
class comes with numerous class-specific S3 methods to the most popular dplyr and tidyr generics.
# see full complement of `soma_adat` methods
methods(class = "soma_adat")
#> [1] [ [[ [[<- [<- ==
#> [6] $ $<- anti_join arrange count
#> [11] filter full_join getAdatVersion getAnalytes getMeta
#> [16] group_by inner_join is_seqFormat left_join Math
#> [21] median merge mutate Ops print
#> [26] rename right_join row.names<- sample_frac sample_n
#> [31] semi_join separate slice_sample slice summary
#> [36] Summary transform ungroup unite
#> see '?methods' for accessing help and source code
Please see vignette vignette("tips-loading-and-wrangling", package = "SomaDataIO")
for more details about available soma_adat
methods.
ADAT structure
The soma_adat
object also contains specific structure that are useful to users. Please also see ?colmeta
or ?annotations
for further details about these fields.
Typical ‘SomaScan’ Analysis
This section now lives in individual package articles. For further detail please see:
- Two-group comparison (e.g. differential expression) via t-test
- Multi-group comparison (e.g. differential expression) via ANOVA
- Binary classification
- Linear regression
- see
stats::lm()
- see vignette
vignette("stat-linear-regression", package = "SomaDataIO")
- see